The following excerpt is reprinted from the new book Energy: Overdevelopment and the Delusion of Endless Growth, edited by Tom Butler and George Wuerthner, published by Post Carbon Institute and Watershed Media, in collaboration with the Foundation for Deep Ecology.
Energy conservation is our best strategy for pre-adapting to an inevitably energy-constrained future. And it may be our only real option for averting economic, social, and ecological ruin. The world will face limits to energy production in the decades ahead regardless of the energy pathway chosen by policy makers. Consider the two extreme options—carbon minimum and carbon maximum.
If we rebuild our global energy infrastructure to minimize carbon emissions, with the aim of combating climate change, this will mean removing incentives and subsidies from oil, coal, and gas and transferring them to renewable energy sources like solar, wind, and geothermal. Where fossil fuels are still used, we will need to capture and bury the carbon dioxide emissions.
We might look to nuclear power for a bit of help along the way, but it likely wouldn’t provide much. The Fukushima catastrophe in Japan in 2011 highlighted a host of unresolved safety issues, including spent fuel storage and vulnerability to extended grid power outages. Even ignoring those issues, atomic power is expensive, and supplies of high-grade uranium ore are problematic.
The low-carbon path is littered with other obstacles as well. Solar and wind power are plagued by intermittency, a problem that can be solved only with substantial investment in energy storage or long-distance transmission. Renewables currently account for only a tiny portion of global energy, so the low-carbon path requires a high rate of growth in that expensive sector, and therefore high rates of investment. Governments would have to jump-start the transition with regulations and subsidies—a tough order in a world where most governments are financially overstretched and investment capital is scarce.
For transport, the low-carbon option is even thornier. Biofuels suffer from problems of high cost and the diversion of agricultural land, the transition to electric cars will be expensive and take decades, and electric airliners are not feasible.
Carbon capture and storage will also be costly and will likewise take decades to implement on a meaningful scale. Moreover, the energy costs of building and operating an enormous new infrastructure of carbon dioxide pumps, pipelines, and compressors will be substantial, meaning we will be extracting more and more fossil fuels just to produce the same amount of energy useful to society—a big problem if fossil fuels are getting more expensive anyway. So, in the final analysis, a low-carbon future is also very likely to be a lower-energy future.
What if we forget about the climate? This might seem to be the path of least resistance. After all, fossil fuels have a history of being cheap and abundant, and we already have the infrastructure to burn them. If climate mitigation would be expensive and politically contentious, why not just double down on the high-carbon path we’re already on, in the pursuit of maximized economic growth? Perhaps, with enough growth, we could afford to overcome whatever problems a changing climate throws in our path.
Not a good option. The quandary we face with a high-carbon energy path can be summed up in the metaphor of the low-hanging fruit. We have extracted the highest quality, cheapest-to-produce, most accessible hydrocarbon resources first, and we have left the lower quality, expensive-to-produce, less accessible resources for later. Well, now it’s later. Enormous amounts of coal, oil, gas, and other fossil fuels still remain underground, but each new increment will cost significantly more to extract (in terms of both money and energy) than was the case only a decade ago.
After the Deepwater Horizon oil spill of 2010 and the Middle East–North Africa uprisings of 2011, almost no one still believes that oil will be as cheap and plentiful in the future as it was decades ago. For coal, the wake-up call is coming from China—which now burns almost half the world’s coal and is starting to import enormous quantities, driving up coal prices worldwide. Meanwhile, recent studies suggest that global coal production will max out in the next few years and start to decline.
New extraction techniques for natural gas (horizontal drilling and “fracking”) have temporarily increased supplies of this fuel in the United States, but the companies that specialize in this “unconventional” gas appear to be subsisting on investment capital: Prices are currently too low to enable them to turn much of a profit on production. Costs of production and per-well depletion rates are high, and energy returns on the energy invested in production are low. Recent low prices resulted from a glut of production produced by rampant drilling in 2005–2007, which only made economic sense when gas prices were much higher than they are now. All of this suggests that rosy expectations for what “fracking” can produce over the long term are overblown.
Exotic hydrocarbons like gas hydrates, bitumen (“tar sands”), and kerogen (“oil shale”) will require extraordinary effort and investment for their development and will entail environmental risks even higher than those for conventional fossil fuels. That means more expensive energy. Even though the resource base is large, with current technology the nature of these materials means they can be produced only at relatively slow rates.
But if the hydrocarbon molecules are there and society needs the energy, won’t we just bite the bullet and come up with whatever levels of investment are required to keep energy flows growing at whatever rate we need them? Not necessarily. As we move toward lower-quality resources (conventional or unconventional), we have to use more energy to acquire energy. As net energy yields decline, both energy and investment capital have to be cannibalized from other sectors of society in order to keep extraction processes expanding. After a certain point, even if gross energy production is still climbing, the amount of energy yielded that is actually useful to society starts to decline anyway. From then on, it will be impossible to increase the amount of economically meaningful energy produced annually no matter what sacrifices we make. And the signs suggest we’re not far from that point.
In one sense it matters a great deal whether we choose the low-carbon or the high-carbon path: One way, we lay the groundwork for a sustainable (if modest) energy future; the other, we destabilize Earth’s climate, shackle ourselves ever more tightly to energy sources that can only become dirtier and more expensive as time goes on, and condemn myriad other species to extinction.
However, in another sense, it doesn’t matter which path we choose: With human population numbers growing and energy constraints looming, we will have less energy to burn per capita in the future. Plot any scenario between the low-carbon and high-carbon extremes and that conclusion still holds, which means less energy for transport, for agriculture, and for heating and cooling homes. Less energy for making and using electronic gadgets. Less energy for building and maintaining cities.
Efficiency can help us obtain greater services for each unit of energy expended. Research has been proceeding for decades on how to reduce energy inputs for all sorts of processes and activities. Just one example: The electricity needed for illumination has declined by up to 90 percent due to the introduction first of compact fluorescent light bulbs, and now LED lights. However, efficiency efforts are subject to the law of diminishing returns: We can’t make and transport goods with no energy, and each step toward greater efficiency typically costs more. Achieving 100 percent efficiency would, in theory, require infinite effort. So while we can increase efficiency and reduce total energy consumption, we can’t do those things and produce continual economic growth at the same time.
Humanity is at a crossroads. Since the Industrial Revolution, cheap and abundant energy has fueled constant economic growth. The only real discussion among the managerial elite was how to grow the economy—whether in planned or unplanned ways, whether with sensitivity to the natural world or without.
Now the discussion must center on how to contract. So far, that discussion is radioactive—no one wants to touch it. It’s hard to imagine a more suicidal strategy for a politician than to base his or her election campaign on the promise of economic contraction. Denial runs deep, but sooner or later reality will expose the delusion that endless growth is possible on a finite planet. More